Cellar Craft Clearing and charged particles

Winemaking Talk - Winemaking Forum

Help Support Winemaking Talk - Winemaking Forum:

This site may earn a commission from merchant affiliate links, including eBay, Amazon, and others.

Stefani

Twitter: @John_A_Stefani
Joined
May 8, 2011
Messages
174
Reaction score
13
Are the particles that are negatively or positively charged in cloudy wine magnetically charged?
 
I believe it is more an electronic charge as in having some number of free electrons in the outer ring or a deficit of some number of electrons in the outer ring. There are positively charge particles (having "extra" electrons) and negatively charge particle (having an incomplete outer ring) and the oppositely charged fining agents combine with them and drop them to the bottom of the container.
 
Any molecule with a (net) positive charge has actually lost (or given up) an electron. An electron caries a negative charge with it. A proton carries a positive charge.

Particles in wine are not magnetically charged.

Here is some explanation on the differences between the two for your reading enjoyment!

There is a strong connection between electricity and magnetism. With electricity, there are positive and negative charges. With magnetism, there are north and south poles. Similar to charges, like magnetic poles repel each other, while unlike poles attract.

An important difference between electricity and magnetism is that in electricity it is possible to have individual positive and negative charges. In magnetism, north and south poles are always found in pairs. Single magnetic poles, known as magnetic monopoles, have been proposed theoretically, but a magnetic monopole has never been observed.

In the same way that electric charges create electric fields around them, north and south poles will set up magnetic fields around them. Again, there is a difference. While electric field lines begin on positive charges and end on negative charges, magnetic field lines are closed loops, extending from the south pole to the north pole and back again (or, equivalently, from the north pole to the south pole and back again). With a typical bar magnet, for example, the field goes from the north pole to the south pole outside the magnet, and back from south to north inside the magnet.

Electric fields come from charges. So do magnetic fields, but from moving charges, or currents, which are simply a whole bunch of moving charges. In a permanent magnet, the magnetic field comes from the motion of the electrons inside the material, or, more precisely, from something called the electron spin. The electron spin is a bit like the Earth spinning on its axis.

The magnetic field is a vector, the same way the electric field is. The electric field at a particular point is in the direction of the force a positive charge would experience if it were placed at that point. The magnetic field at a point is in the direction of the force a north pole of a magnet would experience if it were placed there. In other words, the north pole of a compass points in the direction of the magnetic field.

One implication of this is that the magnetic south pole of the Earth is located near to the geographic north pole. This hasn't always been the case: every once in a while (a long while) something changes inside the Earth's core, and the earth's field flips direction. Even at the present time, while the Earth's magnetic field is relatively stable, the location of the magnetic poles is slowly shifting.
 
Back
Top